环球科创网

比OpenAI的Whisper快50%,最新开源语音模型

更新时间:2024-08-04 09:00:17

导读 生成式AI初创公司aiOla在官网开源了最新语音模型Whisper-Medusa,推理效率比OpenAI开源的Whisper快50%。aiOla在Whisper的架构之上进行了修...

生成式AI初创公司aiOla在官网开源了最新语音模型Whisper-Medusa,推理效率比OpenAI开源的Whisper快50%。

aiOla在Whisper的架构之上进行了修改采用了“多头注意力”机制的并行计算方法,允许模型在每个推理步骤中预测多个token,同时不会损失性能和识别准确率。

开源地址:https://github.com/aiola-lab/whisper-medusa

huggingface:https://huggingface.co/aiola/whisper-medusa-v1

传统的Transformer架构在生成序列时,是遵循逐个token的顺序预测过程。这意味着在生成新序列时,模型每次只能预测下一个token,然后将这个预测的token加入到序列中,再基于更新后的序列预测下一个token。

这虽然能够确保生成序列的连贯性和上下文相关性,但也有一个非常明显的缺陷——极大限制了模型的推理效率。

此外,由于每次只能处理一个 token ,模型难以捕捉到数据中的长程依赖关系,可能会忽略一些重要的全局信息,从而影响模型的整体性能和准确性。

而Whisper-Medusa使用了10头的多注意力机制, 能各自独立地计算注意力分布并行地处理输入,然后将各自的输出通过拼接的方式组合起来,形成一个多维度的向量。

随后向量被送入全连接层进行进一步的处理,以生成最终的token预测。这种并行的数据处理方式不仅加快了模型的推理效率,还增加了模型的表达能力,因为每个注意力头都可以专注于序列的不同子集,捕捉到更丰富的上下文信息。

为了使多头注意力机制在Whisper-Medusa模型中更高效地运行,aiOla采用了弱监督的方法,在训练过程中冻结了原Whisper模型的主要组件,使用该模型生成的音频转录作为伪标签来训练额外的token预测模块。

使得模型即便没有大量手动人工标注数据的情况下,依然能够学习到有效的语音识别模式。

此外在训练过程中,Whisper-Medusa的损失函数需要同时考虑预测的准确性和效率。一方面,模型需要确保预测的token序列与实际转录尽可能一致;

另一方面,通过多头注意力机制的并行预测,模型被鼓励在保证精度的前提下,尽可能地加快预测效率。

aiOla使用了学习率调度、梯度裁剪、正则化等多种方法,确保模型在训练过程中能够稳定收敛,同时避免过拟合性。

业务场景方面, Whisper-Medusa能理解100多种语言,用户可以开发音频转录、识别等多种应用,适用于翻译、金融、旅游、物流、仓储等行业。

aiOla表示,未来会将Whisper-Medusa的多注意力机制扩展至20个头,其推理效率将再次获得大幅度提升。

免责声明:本文由用户上传,如有侵权请联系删除!